GMR Classes

Carboxylic Acids

NOT PUBLISHED

Total Marks: 40.0 **Duration:** 1:00 hrs

Chemistry XII

1.

$$CO(OEt)_2 \xrightarrow{i) Excess RMgX} 'X'$$
. The Ultimate Product 'X' is

(A) Aldehyde

(B) Ketone

(C) t-alcohol

(D) Ester

2.

The structure of product (P) is:

(A)

(B)

(C)

(D)

- **3.** What should be the minimum value of 'n', at which $(CH_2)_n(COOH)_2$ will NOT evolve CO_2 gas on heating.
 - (A) 5

(B) 8

(C)2

(D) 10

4.

The major product of the following reaction is:

$$\overset{COCH_3}{\underset{(ii)H_2SO_4(dil)}{\underbrace{CH_3}}}$$

(A) COCOOH HOOC

(C) COOH

5.

End product of this conversion $CH_3 - C - CH_2 - CH_2 - CH_2 - CO_2H$ $\frac{1. \text{ NaBH}_4}{2. \text{ H}_2O, \text{ H}^*}$

$$(A) \qquad \qquad \bigcirc O = O$$

(B)
$$H_3C$$
 O

$$\begin{array}{c} \text{OH} & \text{O} \\ \\ \text{H}_{3}\text{C} & \text{H} \end{array}$$

6.

In the reaction sequence:

$$\mathbf{CH_3} \hspace{-0.4cm} - \hspace{-0.4cm} \mathbf{C} \equiv \mathbf{C} \hspace{-0.4cm} - \hspace{-0.4cm} \mathbf{H} \xrightarrow{\hspace{0.4cm} \mathsf{CH_3MgBr} \hspace{0.2cm}} \hspace{-0.4cm} \mathsf{CH_4} + (\mathsf{A}) \xrightarrow{\hspace{0.4cm} (\mathsf{i}) \, \mathsf{CO}_2 \hspace{0.2cm}} \hspace{0.4cm} (\mathsf{B})$$

(A)
$$CH_3$$
- $C \equiv C$ - CH_3

(B)
$$CH_3-C \equiv C-MgBr$$

(C)
$$CH_3 - C \equiv C - COOH$$
 (D) $CH_3 - CH_2 - COOH$

7.

End product of the following sequence of reaction is

$$\begin{array}{c}
O \\
\hline
\begin{array}{c}
1.I_2 + \text{NaOH}, \Delta \\
2.H^+, \Delta
\end{array}$$

$$\begin{array}{c}
CH_3
\end{array}$$

(A) Yellow ppt. of CHI_3 and COOH

8.

The order of reactivity of the following esters towards hydrolysis is

- (A) (I) > (II) > (III) > (IV)
- $\mathsf{(B)}\;\mathsf{(II)} > \mathsf{(I)} > \mathsf{(III)} > \mathsf{(IV)}$
- (C) (IV) > (III) > (II) > (I)
- $\mathsf{(D)}\;\mathsf{(IV)} > \mathsf{(III)} > \mathsf{(I)} > \mathsf{(II)}$
- **9.** R— ${\rm CH_2}$ — ${\rm CH_2}$ OH can be converted in R— ${\rm CH_2}$ CH₂COOH. The correct sequence of reagents is
 - (A) PBr_3 , KCN, H_3O^+
- (B) PBr₃, KCN, H₂

(C) KCN, H_3O^+

- (D) HCN, PBr $_3$, H $_3$ O $^+$
- 10. Silver benzoate will react with bromine in acetone to give

GMR ClassesCarboxylic Acids

NOT PUBLISHED

Total Marks: 40.0 **Duration**: 1:00 hrs

KEY

1. (C)

2. (D)

3. (C)

4. (B)

5. (A)

6. (C)

7. (C)

8. (C)

9. (A)

10. (B)

SOLUTIONS

1.

2. Step 1-Acid chloride formation; Step 2-Amide formation; Step 3-Hoffomanu's Bromamide reaction

if
$$n = 0$$

COOH

$$\begin{vmatrix}
COOH & -CO_2 \\
COOH & -CO_2 \\
COOH & -H_2O
\end{vmatrix}$$
(1, 2 - dicarboxylic acid) (Formic acid).

if $n=2$

$$(CH_3)_2 & COOH & -H_2O \\
(Succinic acid) & COOH$$
1, 2 & 1, 3 dicarboxylic acids on heating lose $-CO_2$ to give acids.

√ 1, 4 & 1, 5 dicarboxylic acids (n = 2, 3) on heating lose water to give anhydrides (cyclic).

✓ 1, 6 & 1, 7 dicarboxylic acids on heating lose both CO₂ & H₂O to give cyclic ketones.

3. \therefore n = 2; which will not evolve CO_2 on heating.

5. CH—CH2—CH2—CH2—CO2H which forms ester NaBH, reduces reactant to

6.
$$CH_3 - C = C - Mg - Br \xrightarrow{CO_2/H_3O^+} CH_3C = C - COOH$$
(B)

7.

Which loses CO, on heating (β-keto acid)

- 8. More the electron withdrawing groups, greater the positive charge density on 'C' and more readily the attack can occur.
- 9. $RCH_2CH_2OH \xrightarrow{PBr_3} RCH_2CH_2Br \xrightarrow{KCN} RCH_2CH_2CN$ H₂O/H⁺ → RCH₂CH₂COOH

10.	Borodine Hunsdiecker reaction