

We proves the difference...

KPHB & MADHAPUR - HYDERABAD

ORGANIC CHEMISTRY- BIOMOLECULES, POLYMERS

Single answer type questions:

POLYMERES

- In a polymer sample, 30% molecules have a molecular mass of 20,000, 40% have 30,000 and rest have 60000. The number average $(\bar{M}n)$ and weight average $(\bar{M}w)$ molecular weights are respectively
- (B) 36,000 and 43,333
- (C) 1,40,000 and 1,56,000
 Which of the first
- (D) 228,000 and 56,000
- Which of the following is not a natural polymer? 2.
 - (A) Wool

(B)Silk

(C)Cotton

- (D)Teflon
- 3. The product of addition polymerization reaction is
 - (A) PVC

(B)nylon

(C) terylene

- (D) polyamid
- Polymer consists of large molecules 4.
 - (A) Called macromolecules which are made by linking together repeated units of small molecules, called monomer
 - (B) Called capolymer
 - (C) Called ε caprolactum
 - (D) all of the above
- On the basis of intermolecular forces, polymers are classified as 5.
 - (a) rubbers

- (b) fibres
- (c) elastomers, fibres, thermoplastics and thermosetting
- (d) amino acids
- Which of the following is not a natural polymer? 6.
 - (a) Wool

(b) Silk

(c) Cotton

- (d) Teflon
- Isoprene on polymerization, produce 7.
 - (a) synthetic rubber

(b) gutta – percha

(c) nepprene

(d) cis - poly (2-methyl - 1,3 - butadiene)

We proves the difference...

- 8. Natural rubber is obtained from latex, which is a
 - (a) mixture of wood, plants and gums
 - (b) colloidal dispersion of rubber in water
 - (c) mixture of chloroprene and carbohydrates
 - (d) none of these
- 9. Natural silk is
 - (a) Polyester

(b) Polyamide

(c) Epoxide

- (d) Polyurethane
- 10. Natural rubber is polymer, derived from
 - a) 1, 3 butadiene

b) isoprene

c) Protein

- d) DNA
- 11. Step growth polymers are formed by
 - a) The reactions of a single monomer that possesses two different functional groups A and B
 - b) The reaction of two different bifunctional monomers and concentrated HNO₃
 - c) The intermolecular reaction of bifunctional molecules
 - d) All of these
- 12. A polyurethane is the product of
 - a) toluene 2, 6 diisocyanate and ethylene glycol in presence of a blowing agent
 - b) ∈- caprolactum and ethylene glycol
 - c) terephthalic acid and ethylene glycol
 - d) an isocyanate and an alcohol
- 13. Which of the following is not a copolymer?
 - a) Cross copolymer

- b) block copolymer
- c) Random copolymer
- d) Graft copolymer
- 14. Polymeric molecules are held by
 - a) interatomic forces

- b) coulombic forces
- c) intermolecular forces
- d) gravitational forces
- 15. The polymers such as polyethylene are
 - a) held together by Vander Waals forces
 - b) held together with the forces which operate at long distance
 - c) closely packed with coluombic forces
 - d) none of these

We proves the difference...

16.	Example of thermosetting plastic	ris/are
10.	a) Bakelite	b)PVC
	C) polyurethane	d) Mylar
17.	Terylene is a condensation polyn	, 3
17.	a) benzoic acid	b) acetic acid
	c) terephthalic acid	d) salicylic acid
18.	, <u>-</u>	nsation of hexamethylene diamine and adipic
10.	acid is	insation of nexametrylene diamine and adiple
	a) Dacron	b) nylon 6,6
	c) Rayon	d) Teflon
	c _j Rayon	d) Tellon
19.	A raw material used in making n	ylon is
	a) adipic acid	b) 1,3 – butadiene
	c) ethyne	d) cyclohexanone
20.	∈-caprolactum is the starting m	naterial for the manufacture of nylon 6 and is
	obtained by Beckmann rearrang	ement of
	O	OH O
	, L	
	NOH	
	, []	OH Q O
0.1	a) b) >	c) OH d) O
21.	The repeating units of PCTFE is	1) (11 (11
	a) $CF_2 = CF_2$	b) CH ₂ = CH ₂
00	c) $CF_3 - CF_3$	d) $FClC = CF_2$
22.	The repeating units of PTEF are	1) OD OD
	a) CH = CH	b) CF ₃ – CF ₃
00	c) $CH_2 = CHCN$	d) $CF_2 = CF_2$
23.	Glyptal is the polymer of ethylen	e giycoi and

a) metyl methacrylate b) venyl acetate c) neoprene

Hard plastic covers of telephone are made of polymer of

a) terephthalic acid

c) benzoic acid

a) polyacetylene

c) polyacrylonitrile

24.

25.

d) phenol and formaldehyde

A polymer which is used for making ropes and carpet fibres is

b) adipic acid

d) picric acid

d) PVC

b) polypropylene

We proves the difference...

26.	The polymer which contains nitre	ogen is						
	a) PVC	b) Teflon						
	c) butyl rubber	d) nylon						
27.	The product of addition polymerization reaction is							
	a) PVC	b) nylon						
	c) terylene	d) polyamide						
28.	Cellulose is a condensation polymer of							
	a) maltose	b) β -glucose						
	c) α -glucose	d) β -fructose						
29.	Which of the following is a "polyamide"?							
	a) Rayon	b) Terylene						
	c) nylon	d) Orlon						
30.	Teflon, polystyrene and neoprene	e are all						
	a) copolymers	b) condensation polymer						
	c) homopolymers	d) monomers						
31.	Teflon							
	a)($- CF_2 - CF_2 -)_n$	b) $-(CCl_2 - CCl_2)_n$						
	c) – $(CBr_2 – CBr_2)_n$	d) CF ₂ Cl ₂						
32.	The product of addition polymerization reaction is							
	a) PVC	b) nylon						
	c) Terylene	d) polyamide						
33.	Isoprene is used in making							
	a) petrol	b) nylon						
	c) rubber	d) liquid fuel						
34.		t polymer used in coating, particulary in						
	nonstick cookware?	1) 0 11 1						
	a) Teflong	b) Cellulose						
~ =	c) Bakelite	d) Orlon						
35.	Cellulose trinitrate, also called "g							
	a) Cellophane paper	b) dyes						
26	c) explosives	d) making rayon						
36.	_	joinind by β -1, 4-glycosidic linkages. These						
	molecules are held by							
	a) ionic bond	b) intramolecular hydrogen bonds						
	c) weak vander Waals forces	d) all of these						

We proves the difference...

37.	Which	of	the	following	cannot	serve	as	a	food	source	for	human?)
-----	-------	----	-----	-----------	--------	-------	----	---	------	--------	-----	--------	---

a) Proteins

b) Starch

c) Enzymes

d) Cellulose

38. Natural rubber is a cis-1, 4-polyisoprene. During vulcanization, natural rubber is heated with sulphur. As result, a reaction takes place

- a) that produces cross-links between the cis-polyisoprene chains
- b) and makes the rubber much harder
- c) and sulphur reacts both at the double bonds and at allylic hydrogen atoms
- d) all of these
- 39. Nylon-6,9 is so named because it is a polyamide, formed from a
 - a) six carbon dibase and a six-carbon diamine
 - b) six carbon diacid and a sis-carbon diamine
 - c) six carbon ∈-caprolactum and a six-carbon diamine
- 40. Rubber is a
 - a) conducting polymer

b) oriented polymer

c) elastomer

d) strong commercially available fabric

POC

- 41. Sulphur present in an organic compound is detected by treating the 'sodium extract' with
 - a) potassium ferricyanide

b) postassium ferrocyanide

c) sodium nitroprusside

- d) ammonium thiocyanate
- 42. Which of the following nitrogenous compounds does not give blue colour in the usual Lassaigne's test for the detection of nitrogen?

a) Glycine

b) Urea

c) Aniline

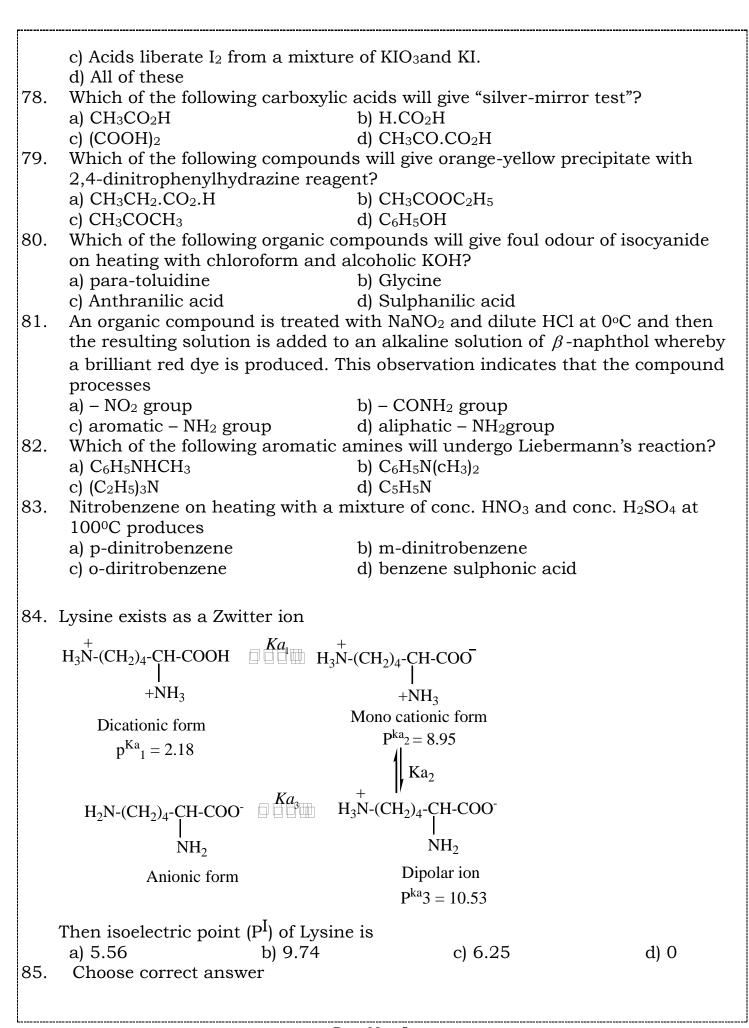
- d) Hydrazine
- 43. For the detection of sulphur in an organic compound, sodium nitroprusside is added to the sodium extract of the compound. If sulphur is present, an intense pink to purple colour is obtained due to the formation of
 - a) $Fe(CN)_2$

b) K₃[Fe(CN)₅NS]

c) Na₄[Fe(CN)₅NO.S]

- d) Na₄[Fe(CN)₆]
- 44. Lassaigne's test is performed to detect the presence of the elements N,S,X & P in an organic compound. In this test the organic substance is at first fused with
 - a) NaCl

b) metallic sodium


c) metallic copper

d) NaOH

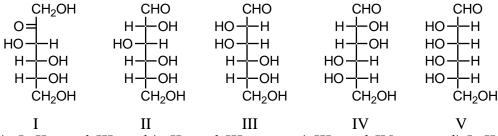
45.	In Lassaigne's test, the sulphur p with sodium, is converted into	present in the organic compound, on fusion
	a) Na ₂ S	b) C ₄ H ₄ S
	c) Na ₂ S ₂ O ₃	d) CH ₃ SH
46.		pounds may be detected by heating the Bunsen nonluminous flame whereby it e. This test is known as b) Lassaigne's test d) Beilstein test
47.	The sodium extract prepared from blood-red colouration with	n sulphanilic acid, contains SCN It gives
	a) FeCl ₃	b) Na ₂ CS ₃
	c) FeSO ₄	d) a mixture of Na ₂ S and CS ₂
48.	the compound, the sodium extraction few drops of concentrated HNO ₃	C, H, N, S and Cl. For detection of chlorine in ct of the compound is at first heated with a and then silver nitrate solution is added to testion with HNO ₃ , prior to addition of AgNO ₃ ,
	a) to prevenet the formation NO ₂	
	b) to convert the CN- and S2- ions	s to volatile HCN and H_2S , otherwise, they
	will interfere with the test by form	ning AgCN and Ag ₂ S.
	c) to prevent the hydrolysis of Na	CN and Na ₂ S
	d) to form S ₄ N ₄ which prevent for	mation of AgCl with AgNO ₃
49.		n extract' of an organic compound containing um nitroprusside solution, a blood-red due to the formation of
	-	b) sodium thiosulphate
	c) ferric sulphocyanide	d) thiourea
50.	, -	pound is fused with sodium, the nitrogen
00.	present in the compound is conv	
	a) sodium nitrate	b) sodium nitrite
	c) sodamide	d) sodium cyanide
51.	·	comine, the sodium fussion filtrate is treated
51.		CCl ₄ . Iodine is detected by the appearance
	a) purple colour in the organic la	yer of CCl ₄
	b) brown colour in the organic lay	yer of CCl ₄
	c) deep blue colour in CCl ₄ layer	•
	d) yellow colour in CCl ₄ layer	
52.	, -	tetrachloride can be separated by
	a) fractional crystallization	_
	· ·	d) vacuum distillation
53.	·	om a mixture of phenol and benzoic acid by
	a) NaHCO ₃ solution	b) NaOH solution
	c) Na ₂ S ₂ O ₃ solution	d) FeCl ₃ solution
	•	•

54.	Orthonitrophenol can be separat	- -							
	a) chromatographyc) steam distillation	b) solvent extraction d) sublimation							
55.	Anthracene can be purified by	d) Sublification							
00.	a) sublimation	b) crystallization							
	c) distillation	d) filtration							
56.	Rectified spirit contains	a) intration							
00.	a) 95.6% ethanol and 4.4% water	· h) 100% ethanol							
	•	c) 95.6% ethanol and 4.4% benzene							
57.	•	nposes at its boiling point. It can be purified							
0	by	aposes at its soming point it can so parmed							
	a) simple distillation								
	b) sublimation								
	c) distillation under reduced pres	ssure							
	d) all of these								
58.	Aniline can be separated from ph	ienol using							
	a) NaHCO ₃	b) dilute HCl							
	c) NaCl	d) conc. HNO ₃							
59.	KOH can be used as drying agen	t for							
	a) amines	b) acids							
	c) phenols	d) esters							
60.	Which of the following compounds are purified by steam distillation?								
	a) Nitrobenzene	b) Chlorobenzene							
	c)Orthonitrophenol	d) All of these							
61.	Quick time can only be used for	drying							
	a) ethanol	b) phenols							
	c) esters	d) carboxylic acid							
62.		determination of molecular weight of							
	a) organic bases	b) organic acids							
	c) aliphatic amines	d) esters							
63.	The molecular weight of aniline is								
	·	tinate salt and then estimating platinum							
	obtained by ignition of the salt.								
	b) converting it into its acetate								
	c) making aniline into its tribromo derivative								
<i>C</i> 1	d) all of these								
64.	_	s used for the estimation of nitrogen in							
	organic compounds?	h) Doot mothed							
	a) Hypobromite method	b) Rast method							
6 E	c) Dumas' method	d) Carius method							
65.	organic compounds?	s used for the estimation of sulphur in							
	a) Carius method	b) Victor Meyer's method							
	c) Kjeldahl method	d) Dumas' method							

66.	An organic compound has carbon and hydrogen percentages in the ratio 6: 1 and carbon and oxygen percentages in the ratio 3: 4. The compound has the							
	empirical formula	1) (11 (
	a) CH ₂ O	b) CH ₄ O						
c 	c) C ₂ H ₆ O	d) CHO ₂						
67.		empirical formula CH ₂ O contains 1.00g of						
	hydrogen. The molecular formula							
	a) $C_5H_{10}O_5$	b) C ₃ H ₄ O ₃						
.	c) C ₁₂ H ₂₂ O ₁₁	d) $C_6H_{12}O_6$						
68.	Which of the following aliphatic aldehydes on heating with concentrated							
	NaOH solution gives an yellow re	- -						
	a) CH ₃ CHO	b) CCl ₃ .CHO.H ₂ O/CCl ₃ CH(OH) ₂						
	c) HCHO	d) All of these						
69.		ls will give chloroform on warming with						
	NaOH solution?							
	a) CCl ₃ CH(OH) ₂	b) H.CHO						
	c) CH ₃ CONH ₂	d) C ₆ H ₅ NHCOCH ₃						
70.	Which of the following organic co with Na ₂ CO ₃ solution?	mpounds will not yield CO ₂ when treated						
	a) Benzoic acid	b) Phenol						
	c) Sulphanilic acid	d) Orthonitrophenol						
71.	Phenol and carboxylic acid can b	e distinguished from each other using						
	a) NaOH solution	b) NaCl solution						
	c) NaHCO ₃ solution	d) None of these						
72.		nguished from each other by the use of						
	a) Fehling's solution	b) ammoniacal silver nitrate solution						
	c) evaporation by heating	d) alkaline KMnO4 solution						
73.	Acetaldehyde on treatment with a produce	alkaline solution of sodium nitroprusside will						
	a) black colouration	b) yellow colouration						
	c) blue colouration	d) red colouration						
74.	Acetaldehyde and acetone can be	•						
	a) iodoform test	b) nigroprusside test						
	c) Fehling's solution test	, 5 1						
75.	Which of the following compound	•						
	a) CH ₃ COCH ₃	b) CH ₃ CO.C ₆ H ₅						
	c) CH ₃ CH ₂ COCH ₂ CH ₃	d) CH ₃ CH ₂ OH						
76.	Methanol and ethanol can be dis	,						
	a) iodoform reaction	b) esterification						
	c) oxidation with acidified K ₂ Cr ₂ C	,						
	d) acrolein test							
77.	,	ns is correct and is useful in identifying						
	carboxylic acids?	<i>y</i> 5						
	a) Carboxylic acids liberate CO ₂ g	gas from NaHCO3 solution.						
	-	sters when heated with alcohol in presence of						
	concentrated H ₂ SO ₄ .	_						

- I) Sucrose on hydrolysis gives $\alpha D glu \cos e$
- II) Sucrose on hydrolysis gives β -D-glucose
- III) Sucrose on hydrolysis gives α -D-fructose
- IV) Sucrose on hydrolysis gives β -D-fructose
- A) I, II, IV only
- B) I, IV only
- C) I, II & III only
- D) I, II, III & IV
- 86. Which of the following will not show fermentation?

87. Compound (A), $C_5H_{10}O_4$ is oxidized by Br_2-H_2O to the acid, $C_5H_{10}O_5$ which readily forms a lactone. (A) forms a triacetate with Ac_2O and a hydrazone with $PhNHNH_2$. 'A' is oxidized by HIO_4 , only one molecule of which is consumed. The structure of 'A' is

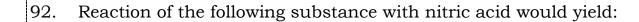

D)

$$CH_{2}OH \\ | \\ HOH_{2}C - CH - CH \left(OH\right) - CHO$$

88. Which one of the following statements concerning the given equilibrium is true?

- A) The two structures are enantiomers of each other and their inter conversion is mutarotation.
- B) The two structures are diastereomers of each other and their interconversion is mutarotation
- C) The two structures are diastereomers of each other one is furanose form and the other is pyranose form
- D) The two structures are enantiomers of each other one is furanose form and the other is pyranose form.
- 89. Which one of the following is not an aldohexose?
 - (A) Mannose
- (B) Galactose
- (C) Talose
- (D) Tagatose

90. Epimers are represented by:


- a) I, II, and III
- b) II and III
- c) III and IV
- d) I, II, and V
- 91. Which of these compounds, I, II, III, IV, is a reducing disaccharide?

- a) I alone
- b) II alone
- c) III alone
- d) IV alone

GMR CLASSES IIT- JEE | NEET | FOUNDATIONS

We proves the difference...

93. Predict the nature of the products Z and Z' in the following series of reactions CHO

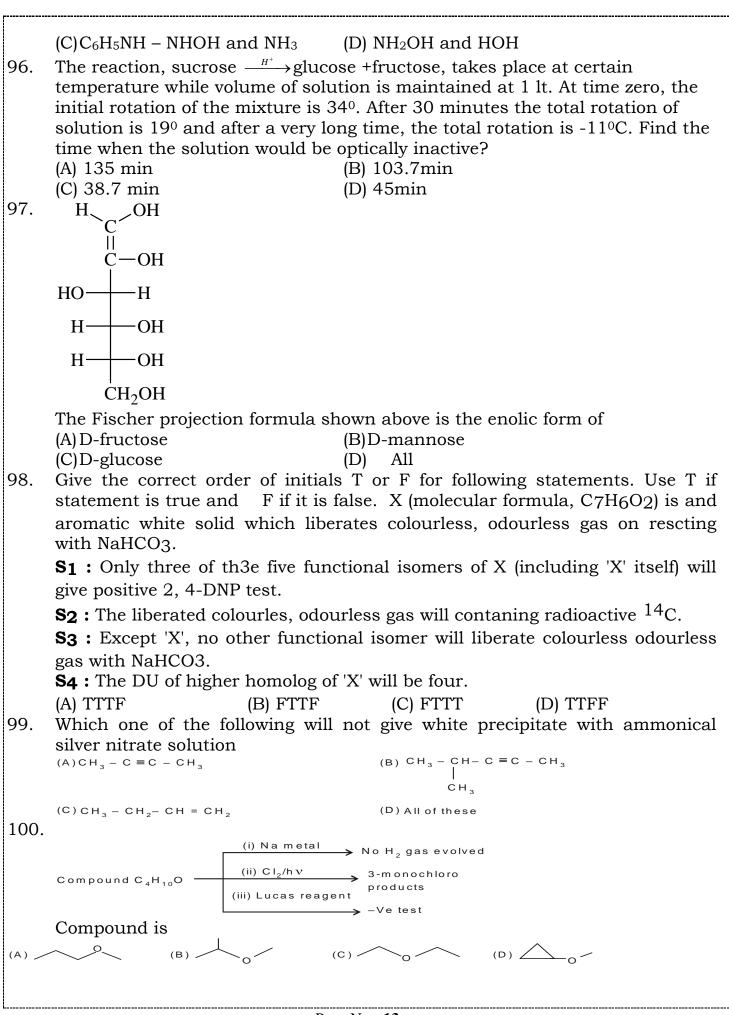
$$\begin{array}{c|c} CH_2OH \\ | \\ CO \\ | \\ (CHOH)_3 \\ | \\ CH_2OH \end{array} \longrightarrow \begin{array}{c} NaCN/HCN \\ [X'] \end{array} \longrightarrow \begin{array}{c} H_3O^+ \\ [Y'] \end{array} \longrightarrow \begin{array}{c} HI/P \\ [Z'] \end{array}$$

- (A) both are n-heptane
- (B) both are n-heptanoic acid
- (C) both are 7-iodoheptanoic acid
- (D) Z is n-heptanoic acid and Z' is a substituted hexanoic acid
- 94. Ring structure of glucose is due to formation of hemiacetal and ring formation between
 - (A) C_1 and C_5

(B) C_1 and C_4

(C) C_1 and C_3

(D) C_3 and C_4


95. In the given reaction:

Glucose + $3C_6H_5NH - NH_2 \xrightarrow{H^+/\Delta}$ Osazone + A + B

(A) and (B) are

(A) $C_6H_5NH_2$ and NH_3

(B)C₆H₅NH₂ and NH₂OH

Page No - 13 -

We proves the difference...

KEY SHEET

BIOMOLECULES, POLYMERS, POC

Single Answers:

<u> </u>											
1	В	2	D	3	A	4	A	5	С	6	D
7	D	В	В	9	В	10	В	11	A	12	A
13	A	14	С	15	A	16	A	17	С	18	В
19	A	20	В	21	D	22	D	23	A	24	В
25	D	26	D	27	A	28	В	29	С	30	С
31	A	32	A	33	С	34	A	35	С	36	В
37	D	38	D	39	В	40	С	41	С	42	D
43	С	44	В	45	A	46	D	47	A	48	В
49	С	50	D	51	A	52	В	53	A	54	С
55	A	56	С	57	С	58	В	59	A	60	D
61	A	62	В	63	A	64	С	65	A	66	A
67	D	68	A	69	A	70	В	71	С	72	С
73	D	74	С	75	С	76	A	77	D	78	В
79	С	80	A	81	С	82	A	83	В	84	В
85	D	86	С	87	D	88	В	89	D	90	В
91	В	92	С	93	D	94	A	95	A	96	В
97	D	98	В	99	D	100	В				

GMR CLASSES IIT- JEE | NEET | FOUNDATIONS

We proves the difference...